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EFFECTIVE ELASTIC-PLASTIC COMPRESSIBILITY
OF POROUS BODIES

W, KREHER and H.-G. SCHOPF

Department of Physics, Technical University, Dresden, German Democratic Republic

Abstract-In the present paper relations between the hydrostatic pressure and the mean pore volume of a porous
body are offered. Especially, attention is drawn to the plastic range of deformation history. Contrary to previous
works, the interaction between different pores is attempted to be taken into consideration in a summary manner
by using a self-consistent method. For this end the surroundings of a single pore is replaced by a homogeneous
material, which is described by the compression-law in question. The results are evaluated numerically and
approximate formulae are given. Comparison with experimental results shows partially good coincidence.

1. INTRODUCTION

THE PRESENT work is concerned with the mechanical behaviour of a porous body under
hydrostatic pressure p. We want to derive relations between p and the mean volume Vp
of the pores. The pure material may behave according to linear elasticity, and perfect
plasticity, respectively. Here Tresca's yield condition, with yield stress tension (J0' is applied.
For the reason of mathematical simplicity spherical holes are assumed. Further, we
restrict ourselves on the quasistatic behaviour. For problems connected with the dynamic
compaction see, e.g. [8, 9].

First Torre [IJ has offered a solution of the problem under restrictive conditions which
can be stated as follows. All the pores have equal size Vp and are encased by the same
volume VM of matter. Further, the same pressure p is acting on the exterior surface of
these casings. Finally, elastic deformation is disregarded. The result is

(1)

(1.1)

where V~ is the pore volume at vanishing pressure, For the real case (1) may be approx­
imately used replacing Vp, V~, VM by their mean values Vp,V~,VM' Pompe and Merz [2J
have refined this model by assuming a distribution function f(V~). Thus they write

1 [IV pIp) JOC! ]
Vp = sOC! f(Vo)dVo f(V~)V~dV~+Vp(p) f(V~)dV~

0. p p ° V p(p)

with Vip) given by (1),.
From a physical point of view the most serious lack of these models consists in ruling

out the interaction between the pores from the beginning by means of the above mentioned
presupposition concerning the pressure. ChU and Hashin [3J have suggested a so called
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"composite sphere model". In this model the pressure p is acting at infinity and the
material is composed of hollow spheres. Every sphere consists of a pore with volume V~

and a casing with volume VM , where V:\{/V~ is constant, everywhere. As has been shown
by the authors, their assumptions entail that there is no interaction between the spheres,
such that they arrive at the same results as Torre did so (1).

Contrary to the mentioned works, in the present paper interaction between the pores
is attempted to be taken into consideration in a summary manner by deriving a con­
stitutive equation

e = cp(s) (1.2)

which relates the mean normal stress s to the mean compressibility e. (Remember de­
compositions like (Jij = sbij+sjj' Sjj = 0). The shearing behaviour is assumed to be
governed by perfect plasticity being characterized by an effective yield stress (J~ and an
effective shear modulus Ge which will be fitted to experimental data. (The corresponding
constants of the pure material are called (Jo and G, respectively.) In order to determine
(1.2) a self consistent method will be used, similar to that as is known already in con­
nection of the calculation of effective elastic constants. For this end, the inhomogeneous
material, surrounding a single pore, is replaced by the so called homogeneous effective
material with the effective constants (J~, Ge and the still unknown effective compressibility
(1.2) :

(1.2a)

(The index e means effective material). The solution of the corresponding elastic-plastic
problem will relate the compression of a single pore to the mean hydrostatic stress. Finally,
averaging will lead to the determination of the unknown function in (1.2). In detail we
shall discuss two models:

(I) The inclusion is simply a pore with initial and final volume V~, Vp , respectively.
Beginning with a certain value p = p* with increasing pressure a plastic zone will
grow from the pore surface outward through the effective material.

(II) The inclusion consists of a pore and a casing as described above. Here the plastic
zone will run through the casing up to its exterior boundary, since the elastic­
plastic behaviour of the effective material is merely described by the assumption
of the constitutive relation (1.2). In the framework of this model we do not deal
explicitly with plastification of the effective material.

We shall disregard surface effects and, therefore, formally deal with an infinite body:
that is, we assume the boundary condition

(1.3)

Because of (1.2) also

(1.4)

holds. p is the exterior pressure applied on the body. Further, the inclusion can be put
into the origin of coordinates such that the whole problem becomes spherically sym-
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metric. Hence, the basic mechanical law reads
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(1.5)

and v: = veer) is the only non-vanishing component of the displacement vector.
In the effective material, so to say, pores and pure matrix are smeared over the body.

In this way, we are dealing with the pore volume V~(r) as a continuous function of position,
such that any volume element of the effective material at position r may be written as

d V~ = (V~(r) + V~(r)) dy. (1.6)

Concerning compressibility we disregard the compression of the pure material in com­
parison with that of the holes. In other words, the pure matrix behaves isochorically, in
contrast to the effective material whose compressibility is given by (1.2a). Therefore,

(1.7)

and

are valid, where

va
(i -. p

- V~+VM

is a mean porosity. From (1.2a) with regard to (1.7) one gets

(1.8)

For more convenience it is preferable to replace the right-hand side of this equation by
a function f in the following manner:

By means of the abbreviations

(1.9)

3p
Z=-

20''0
(LlO)
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(1.9) turns into
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y = f(z) (1.11)

(1.13)

for large distances from the inclusion (r ---> C/.J).
Thus the determination of the unknown function f solves the initial problem. Now,

the solution of the above mentioned elastic-plastic problem looks generally like
o -0 - -

Vp = Vp(Vp' VM , Vp' VM' Vp' Pl[fJ) (1.12)

where [fJ indicates a possibly occurring functional dependency. After averaging over
V~, VM and on account of (1.10) there yields a functional equation for the unknownf

Vp (V p _ . )
V~ = y = f(z) = F V~' 12, z, [fJ

(F stems from averaging the right-hand side of (1.12).)
In the general case this functional equation is too complicated for being discussed

without further approximations. Throughout this paper

(1.14)

(1.15)

will be proposed. This requirement does not prevent the pores to vanish (V p = 0), so far as
ii has been chosen sufficiently small.

Since V~(r) will turn out to decrease with increasing r it is enough demanding

ii
lei = 3(1- y) « 1.

In particular, (1.14) leads to the replacement of (1.7) by

(1.16)

where, moreover, (1.9) has been substituted.

2. MODEL I. PURLY ELASTIC DEFORMATION

We employ linear elasticity and notice

e 1(due v
e)e = ~ -+2-.

3 dr r

(2.1)

(2.2)

(2.3)
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Thus (1.5) goes over to

(4Ge+ dSe) (d
2
V
e
+~ dve _2

ve
) = O.

dee dr 2 r dr r2

On account of (1.16), (1.9h the first factor cannot vanish, and hence, we obtain

ve(r) = C 1r+C2 r- 2

from which it follows

1335

(2.4)

(2.5)

se = _p

(2.6)

(2.7)

where (1.3), (1.4) and (1.9) have been taken into account. On the surface of the hole with
radius ri the condition

O'~ = s~ + se = 0 for r = ri

must be required which furnishes

C _J!.-r3

2 = 4Ge"

Thus we arrive at

e( ) [- p (r;)3Jv r = r e - 4Ge --;: .

(2.8)

(2.9)

(2.10)

In the framework of linear elasticity ri can be taken as the initial radius of the hole,
that of the deformed one then being ri+Ve(rJ Therefore and because of (2.9), (1.7) an
equation of type (1.12) is easily found, namely

V (r + ve(rW ve(r.)-%=' 3' ~1+3--'
V p ~ ~

3p
= 1-(i(l-y)-~

4Ge'

In this case the average is trivially performed. With the notation

k = O'~
2Ge

the final result reads

.' k
y = f(z) = l---_z.

I-IX

(2.11)

(2.12)

This is our desired material relation in the case that the exterior pressure p is too small
for plastification. Let us show that plastification starts at the surface of the hole when the
pressure p is

(2.13)
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It is enough to observe

(2.14)

such that the maximal shear stress occurs, in fact, at r = rio Equating (2.14) with (Jo,
according to Tresca's yield condition, for r = ri proves (2.13). Therefore, (2.12) is valid for
p s p* i.e. z s z* 1. z = z* corresponds to

(2.15)y
k

y* = 1--­I-a
Finally, we remark that for most of the real materials k can be estimated as k < 0-01,

therefore

k « 1 (2.16)

holds.

3. MODEL I. ELASTIC-PLASTIC DEFORMATION

(3.2)

If p > p* there exists a plastic-elastic boundary, say, at r = p. Hence, the material
deforms elastically within the region r 2?: p. This means, in turn, that (2.1) to (2.7) remain
valid, but, instead of (2.8), we must take into account the boundary condition

(Jo = ts:(p) = -6GeCzp-3 (3.1)

Consequently, (see 2.5, 2.6 and 2.7)

[
(Je (p)rJ

f)e(r) = r e- 6~" -;: _

a:(r) p+~ao(~) 3.

In the plastic region ri S r S p Tresca's yield condition

(3.3)

is inserted into the basic law (1.5) which immediately integrates as

a:(r) = -~ao In(r/rY

s"(r) = !«(J~+ 20'~) = -iO'o(l + In(r/r;)3).

(3.4)

(3.5)

Here, in contrast to the previous section, Vp = 11tr~ holds, i.e. the condition (2.8) is ful­
filled on the variable boundary r = rio Because the plastic problem is statically deter­
mined there is no need for requiring the deformation to be small within the whole plastic
region but only in the vicinity of r p. In this way let us notice

ve(p)

p

pO
1--= I

p
(3.6)
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(3.7)

where pO means the initial position of those mass points which were situated at r = p
when the pressure p is acting. Then, because of (3.2, 3.6 and 1.15)1' the condition that ve

be continuous at r = p furnishes

V
O+ V

O
((Je ) 3-p--~ = I +_0+~(l-y) == w(y).

Vp + Vp 6Ge

The second boundary condition, which concerns the continuity of (J~ at r p, gives

(3.10)

~ = z = 1+ In Vp + Vp (3.8)
2(J~ V

p
•

In order to eliminate the unknown quantities Vp , V~ equation (1.l6) is integrated over the
volume J;~. With the help of the substitution (see 3.5)

3se(r) r 3

t = - ---- = 1+ In -
2(J~ r1

and observing (3.8) the mentioned integration leads to

Vp - V~ = -iiVp ( eZ-I_I_ f et
-

1 f(t)dt). (3.9)

Combining this relation with (3.7) renders the desired elimination possible and establishes
again an equation of type (1.l2). Instead of stating such an equation, let us immediately
proceed to the averaged one of type (1.l3) since the last step is again trivial in the present
case.

Y[(W(Y)-(I+ii»)eZ
-

1 +(l+ii)+iif et-1f(t)dt] = 1.

Because of Y = f(z) (1.l1), in fact, we are faced with an integral equation for f(z) whose
determination is our actual aim. It cannot be achieved deriving explicitly f(z) itself. How­
ever, its inverse function can be found. Denoting

x = eZ - I = ef - l(y)_ I = x(y)

we get

x(y) = g;y)[g(YI)exp ( -ii fl ;:») +fl /2 exp( -iif;:») dt]

with the abbreviation

g(y) = w(y)-(l +ii)+iiy

and Yl being determined by

w(yd.y, = 1.

(3.11)

(3.12)

(3.13)

(3.14)

Obviously, Y = Yl corresponds to z = z* = 1. In order to obtain (3.12) to (3.14) most
conveniently realize that by differentiation of (3.10) with respect to x there occurs a linear
differential equation for x(y).

Observing the inequalities (1.15 and 2.16) it is seen that in first order

g(y) = k (3.15)
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holds. With the same accuracy Yl can be replaced by y* = 1- kl(l-a), which corresponds
to z = 1 in the elastic case treated in Section 2. In the frame of that approximation (3.12)
is simplified as

1 [a * ] ( I) a (a) [ .( a) .( a *) ]x(y) = -+exp --(y - y) 1-- +- exp -y EI --Y -EI --y (3.16)
ky k ky* k 2 k k k

Ei(-t) = I-I ~ds.
-w s

Further simplification is achieved by use of an asymptotic formula for the logarithmic
integral Ei(see [4]), which is justified for y ~ 10(kla)

x = ~(1- _2 k) -exp[-~(y*-y)J(~(l-:k) -1). (3.17)exl exy k exy*2 exy*

Here the second term can be disregarded because of (2.16), unless y ~ y*. Hence, let us
assert

or even

1 ( 2k)x(y) =~ 1-~
exl exy

(3.18)

(3.19)

(3.20)

In the other case, treating both Iy - y*1 and k, as small quantities, remodels (3.17) into

x = A+~(Y*-Y)-(A-l)exp[ -~(y*-y)J for y* ~ y ~ y*-O·l

1( 1-2a) 1A = =1-2k_ _ =-_-[1-2k/(ay*)].
ex ex(l-ex) exy*2

4. MODEL I. UNLOADING

In order to prepare the discussion of unloading, first of all tension-loading may be
briefly considered. For this end it is enough to repeat the previous calculations with the
following substitutions.

p -+ -p, (J~ -+ -(J~ }

z -+ Z, x -+ x, k -+ - k
(4.1)

The resulting relation is sketched in Fig. 1. Differentiating (3.10) with respect to x and
using (3.15) leads to the maximum of tension z(y)

(4.2)

Here Xc and Yc may be determined by means of (3.20), (4.1), because it is to be expected
that lYe - y*1 « 1 holds. The result is:

1
Xc = =(1- 2Bk),

ex
Yc = l+Bk,

__1_ ~ I (a(l-a))
B- 1_ a +a n 2k . (4.3)
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't

FIG. I. Stress-strain relation according to model I.

An estimate of B gives

0< B < 20

1339

(4.4)

for k = 0·005 and 0·1 ~ ii ~ 0·9 and therefore lYe - y*1 < 0·1 « 1 holds, indeed. Now let us
turn to the investigation of unloading. When after application of the external pressure p
this load is removed again, the question arises to what extent the mean pore volume will
form back. For an answer we submit the state of compression (with boundary condition
a~(oo) = -p) to an additional tensile stress with a~e(CX)) = p. For the sum a;j = afj+a;j
the following equations hold:

a;e - a;,e = - 0'0 within the plastic zone).

a;e(oo) = O.

By the help of a~ - a~ = a~ and (4.5)2 it follows

a~e - a;e = - 2ao (within the plastic zone).

(4.5)

(4.6)

It is seen, that a;j is governed by the same relations as in the case of tension-loading, except
of (4.6), where a~ is replaced by 2a~ (cf. Prager, Hodge [5J). Hence the results at the be­
ginning of this section may be applied with the following re-interpretation of the oc­
curring quantities, however.

z ---+ z/2

ao ---+ 2a~

x ---+ x' = ez / 2 - 1 k ---+ 2k.
(4.7)

Moreover, the new initial volume is just the final volume of loading, i.e. one has to replace
V~, V~ by Vp , Vp respectively, while instead of Vp , Vp there appear the final volumes of
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(4.8)

(4.9), I k
} ' =. +--z

1-Ci'

unloading, say V~, V~. Consequently the following substitutions are required:

VO V "Ci p ~ a' _ p r

V~+VM -Vp+V M y+(l-tt)jtt
- -0 / -,-

y = Vp!Vp~ y = Vp!V1'

y' = y'(y, a, z) is the quantity to be determined. Since a general computation of y' is too
complicated we restrict ourselves to an estimate of y' in comparison to y. For purely
elastic unloading from Section 2 and by the help of (4.1, 4.7 and 4.8) it follows:

Oszs2

, *' I 2k<}' < v = +--.- -. I-Ci'

(4.10)

In the case of elastic loading, i.e. 0 S z s I we can substitute (2.12) into (4.8) to obtain

y. y' I +O(k2
)

which shows in the frame of our approximations that for elastic compression the original
form is fully recovered by unloading as it must be so.

Let us turn to the case of elastic-plastic loading but purely elastic unloading i.e.
1 s z s 2. Since by means of (4.8) 0 < a' < a < I we conclude

1 2k
y' < l+--kz < 1+--

I-a 1-Ci

from which it is seen that for z = 2, already, recovery is negligible in comparison with the
plastic compression.

In the case of elastic-plastic unloading (2 S z) it is to be expected that x' < x~ holds.
x' < x~ is tantamount to y' S y~ and because of (4.3) and (4.4) recovery again turns out
to be negligible. Concerning the validity of x' < x~ = x~[Ci'(y)], the following arguments
may be offered:

On account of (4.4) x~ may be replaced by IjCi', and computing this quantity according
to (4.8), we restrict ourselves to sufficiently large plastic deformations such that (3.19) cah
be used. Under these circumstances (and observing x = eZ I, x' = e=!2 - I) the validity of
x' < x~ turns out to be equivalent with that of

eZI2 h(a) < e (4.11)

where h(Ci) = 1-(1- a).j(ejCi) is a monotonically increasing function, whose zero is
Cio ;::; 0·55.

Therefore (4.11) is valid for arbitrary z so far as ci S Cio, whilst in the case ofCio < ci < 1
the inequality necessitates z < 2 - 2 In[h(a)}. Such a restriction has no physical meaning.
However, we need not bother with it. Namely, the contrary case can be ruled out because
it violates our fundamental assumption (1.15):

e
Z

!2 = .j(e. x) = J(~H > h;a)

furnishes
ta(l y) 2 Hl-.j(Cije)] > t(l-lj.je) > 0·13

which cannot claim to be much smaller than unity, in contrast to (1.15).
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5. MODEL II
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The new model concerns the effective material with an inclusion consisting of a pore
(as above) but encased by pure incompressible material with volume

(5.1)

Deformation, stress and material constants of that casing are denoted by the same signs
as above but, in contrast to the effective material, without the index e.

When the pure material is deformed according to linear elasticity, we may start from
the condition of incompressibility

dv u
e = ~+2- = 0

dr r

such that

v = Cr- 2

(Jr = s-4GCr- 3

s(r) = s = const.

(5.2)

where the last assertion follows from the basic mechanical law. (1.5 without the index e).
In the effective region ra ~ r, obviously, the solution (2.5, 2.6, 2.7), is valid. The constants
of integration C2' C, s are determined by means of the boundary conditions:

(Jr(ra) = (J~(ra)

v(ra) = ve(ral-

The result reads

C2 = -[4r;;3(Ge_ G)+4Gr;r l [p+4Ge( ;f -l)J
C = - [4ra-

3(Ge - G)+4Gr;r l[p-4eGeJ

s = -p+4Ge+4C2r;3(G-Ge).

A relation of type (1.12) is found as

Vp v(rJ e e _1[3P - J
V~ = 1+3--;:;- = l-[GjG -a(GjG -l)J 4Ge+0[(l-Y).

Here in analogy to (1.8) the definition

has been introduced.

(5.3)

(5.4)

(5.5)

(5.6)
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In a similar way as at the end of Section·2 it is seen that plastification begins at r = r j

when p takes the value

which corresponds to

* 4 e[ao(G (G )) - ]p =3G 2G Ge- rx Ge- l -tX(l-y) (5.7)

(5.8)v; = 1- ao
V?, 2G

Now for p > p* there occurs an elastic-plastic boundary at r = p < ra' In this case, for
r z ra the situation remains unaltered, solution (5.2) holds in the region p :.,::; r :.,::; ra

while
r

ar = -2ao ln­
r j (5.9)

ar-at = ao holds for ri :"::; r:.,::; p.

The requirements (ar-at)r~p+o = ao, u(r~) = ue(r~), ar(r~) = a~(r~)* determine the
constants of integration

C
__ ao 3
-~p

6G

(5.10)

(5.11)

(5.12)

2 p3 (Ge )
s = -p+4G

e
c+3 (r~)3aO G- 1

In order to eliminate p we use (analogously to (3.6))

( 1_~)3 _ Vp + V~ _ (1_~)3 _ (1+ ao )3 _ 1+ ao
r r~p-O - Vp+ Vp - r r~p+O - 6G - 2G

which furnishes

Vp = ~~[V~-Vp(I+;~)J
4n 3 2G 0Vp + Vp = -p = ~(Vp- Vp).
3 ao

With the aid of all these relations, the requirement that ar be continuous at r = p
leads to an implicit equation of type (1.12), namely

~= 1+1n(2G V~-Vp)+2Ge[rx(l_V~)-ii(I-~~)J_2Grx(l-V~) (5.13)
2ao ao Vp ao Vp V p ao Vp

where squares and higher powers of ao/(2G) have been disregarded. (d. 2.16).
Substitution of (5.7 and 5.8) into (5.13) shows that both, the purely elastic and the elastic­

plastic, solutions fit well together.

* The meaning of r~ is quite analogous to r?
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On the other hand Vp = VM means total plastification of the casing. According to
(5.12 and 5.13) it happens for the pore volume and pressure, respectively, given by

v ** (1' 1
-p-= 1-~
V~ 2G rx

3p** ( 1 ) 2Ge[(1' ( V)J-- -In . +- ~-(j 1-2
20"0 - rx-0"0/(2G) (1'0 2G V~'

(5.14)

(5.15)

Finally, when p > p**, we do not deal explicitly with plastification of the effective material
in the framework of the discussed model.

Hence, again the same solution as above is taken for the effective region, while (5.9) is
valid for r j S; r S; ra' The only unknown constant of integration, C2' is determined by
the condition ve(ra) = v(ra), and from the continuity of (1'r at the boundary there yields
the implicite equation of type (1.12):

3p 1 [( Vp ) ( V p)] ( l-rx V~)z\=- -=--rxl-o -(jl--o +Inl+----.
2(1'0 k\ V p Vp rx Vp

Here k1 = 0"0/(2Ge) « 1 has been used, (which together with (1.15) makes rx/3(l- Vp/V~) a
small quantity). Fitting to the previous solution at p = p** is ensured. Summarizing let
us assert:

Solution (5.5) is valid for 0 S; P S; p*.
Solution (5.13) is valid for p* S; P S; p**.
Solution (5.15) is valid for p** S; p.

6. MODEL II. APPROXIMATIVE EVALUATION

The serious disadvantage of the discussed model in comparison to the first one con­
sists of the impossibility of straightforward proceeding from (5.5, 5.13 and 5.15), respec­
tively, to the desired average equations of type (1.13).

A considerable simplification is achieved in the special case

(6.1)

which is equivalent to

(6.2)

Then (5.5) and (5.7) go over to

1 3p
y = 1-1_(j 4G (6.3)

p* = to"o(l-(j). (6.4)

Further, under the supposition (6.1) the relations (5.13 and 5.15) take the form

3p ,1,( Vp ). 0-l( 3P )
2(1'0 ='1' V~' J.e. Vp = VpljJ 2(1'0

such that performing the average becomes again trivial:

3p

2
= ljJ(y)

(1'0
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or explicitly:

3p (2GI- Y) 2G_-= 1+ln --- --cx(l-y)
2ao ao y ao

~ = In(I_ 1- a !) = In(Vp+VM
)

2ao a y V p

respectively. The pressure p** goes over to

p* :s; p :s; p**

p** :s; p

(6.5)

(6.6)

(6.7)

3p** (I ( ao I))
2a

o
= In ~ 1+ 2G ~ .

(6.6) is Torre's formula (which has been recalculated by Chu and Hashin [3]). As already
pointed out on that occasion, the background of it is disregarding any interaction between
the pores. It can be argued that the same objection to (6.4) and (6.5) is justified.

Now let us look for another possibility of an approximative evaluation. A suitable
approximation seems to consist of disregarding the elastic deformation of the casing, i.e.
treating it as a rigid plastic body. Formally, such a treatment amounts to (ao/2G) ---> 0,
which limiting process transforms (5.8 and (5.14) into

v* V** 3p** 1 _ ( Vp) 1
V~ = ;~ = 1 2ao = - k;cx I-V~ + In;-

The assertion at the end of Section 5 is now modified as

o :s; p :s; p** (6.8)

(6.9)p** :s; p.ZI =~ = ~[a(l- V~) -a(I-~~)J +In(V
p

+ V
M

)
2a0 k 1 V P V P Vp

However, p** depends on a and takes thus different values for different inclusions, while,
on the other hand, the external pressure is a given parameter. Therefore, the question,
whether or not any pore is deformed, should be decided by means of a remodeled criterion.
For this end consider

(6.10)a** = exp[- (~+~a(1-~~)J.
2ao k 1 V p

As is immediately seen, inclusions with a = V~/(VM + V~) :s; a** behave rigidly, inclusions
with a > a** deform plastically according to (6.9). In the VM, V~-plane these ranges may
be denoted by B 1 and B2 , respectively.

Let us call the inverse function of (6.9)

(6.11)

and be w(V~, VM ) any distribution function. Then the functional equation of type (1.13),
reads

(6.12)
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(6.13)

Ifour attention is not especially drawn to the initial deformation, i.e. if p is sufficiently large,
the region of rigidity B 1 may be disregarded at all. Namely, an estimate gives 0:** < 0·01
so far as VpjV~ < 1- 5k t(f.i. which, in turn, is fulfilled in nearly all the cases, because of
k 1 « 1. Therefore we are faced with the problem of solving the implicite equation for Vp

Vp = II W(V~, VM)<I>(V~, VM, Vp,iX, p) d v~ d VM == ljJ(Vp).

Suppose for the moment that the function <I>(V~, VM, Vp' iX, p) is known. Then the problem
may be attacked by means of successive iteration by applying the general scheme of
solving an equation

x h(x)
by means of successive iteration:

x n + 1 = h(xn)·

As is well known the condition of convergence is

IdhjIdx < 1

which, in the case of (6.13), takes the form

I
dljJ Iliff 0 d<I> 0 I I(d(i))j1 > dV

p
= w(Vp, VM)dV

p
dVpdVM = I dV

p
'

But that proves right. According to (6.9)

- -0 V~+VM 0 -0 - ( Vp + VM )Vp=Vp- 0 (Vp-Vp)+k1(Vp+VM) zl-ln----<---...:;..
~+~ ~

holds, and therefore

(6.14)

(6.15)

i(d<I»1I dV; < 1.

Having (6.9) rewritten as

_ 0 V~+VM-O - 0 (VP+VM )_ *Vp - Vp 0 V (Vp-Vp)+kt(Vp+ VM) In-----zl = <I> (Vp)
V p + M Vp

the same approximation method may be applied for calculating (6.11). Convergence
requires here Vp > k t (VM + V~). Otherwise, one has to start from Vp = <I> - t *(Vp)'

A numerical evaluation of the equations (6.9) and (6.13) (with the help of the method
described above) can be found in Section 7.

In some cases the numerical solution of (6.9) and (6.13) may be avoided and replaced
by another approximation. Observing (1.10 and 1.8) the first and second term of (6.15)
reads
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where

Now according to (6.15)
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va
A = ~(l-a(1-y)-a(l- y).

)/ilf
(6.16)

(6.18)

v = A(V V~) V (6.17)
p .' V M

M

turns out to be a good zeroth approximation for (6.11) (because of k 1 « 1) so far as
A(y, V~/VM) ;;;:: 0·1 i.e.

V~ 0·1 +a(l- y)- > -----'----'-'--
VM "" 1+a(l- y) .

If, for instance a = 0·5, y = 0·5 the requirement is V~/VM;;;:: 0·2. In other words, the
approximation (6.17) may be accepted for pores whose initial volume is sufficiently large.
Further, taken for granted that very small pores can be disregarded at all, we are able to
proceed to a good approximation solution of our actual problem.

For this end, let us perform the average of (6.15) to obtain

(V~+ v,\f)(ln VP;pV,\f_ZI) = 0

in other terms

3p 1 0 (VM )zl=-2 =-yo V--(V p + VM ) In 1+-
0: 0 p + M Vp

However, so far as the quoted suppositions are valid, it is allowed to substitute (6.17),
which furnishes the approximative solution

3p I 0 ( I)
ZI == 20:0 = y~+ Y M (Vp+ VM) In 1+ A(y, V~/V\f (6.19)

Finally, consider the special case that all the pores have the same value of V~/VM

Then A is constant under averaging, namely, VpiVM, (see 6.17). Hence, (6.19) goes over to
Torre's formula (6.6), in accordance with the discussion in the context of (1.1). In terms
of physics, such a constancy of the pores means, that their characteristics Vp, V~, VM do
not fluctuate too much around their mean value. Therefore, Torre's formula is obtained
directly from (6.18) if products of those fluctuations were neglected.

The discussion of unloading is much more complicated because of the impossibility
to evaluate equation (6.12) exactly. Therefore, we have taken into consideration only
Torre's formula (6.6). But in this case (disregarding elastic deformations) it is easily seen
that redeformation of the pores does not occur.

7. NUMERICAL RESULTS

For the purpose of connecting the theoretical considerations with some experimental
results, we have taken the Hittner's [7] measurements, which concern pressing of metal
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(7.1)

powder. Here the compression is mainly a plastic process. On the other hand equations
(6.13,6.15 and 3.16), respectively, have been evaluated. Moreover, the formula (1.1), given
by Merz and Pompe [2J has been treated numerically. So far as a distribution function
for the pore size is needed we decided for Bockstiegel's [6J experimentally determined
distribution. Bockstiegel has found that the accumulated porosity is of the log-normal
type. This result corresponds to the following distribution function

w(V~) = ~(V~~aX)2In (V~~ax) exp[_(ln(V~max/V~))2J
Vp max Vp Vp ,1.

where C = 1·02 follows from

(7.2)

V~max is the maximal pore size (w(V~maJ = 0).
Therefore the range of integration reduces to 0 S V~ S V~max, ,1. = 0·9 has been

taken from Bockstiegel's measurements. V~max has been calculated from the condition
that V~/(V~+VM) equals the experimental Cl. Distribution functions for VM were not
known to us. For this reason we have taken VM = VM and with it the final distribution
function reads:

(7.3)

Further, the quantities 0"0 and O"~, respectively, as well as k = 0"~/(2Ge) and k j = 0"0/(2Ge)
have been fitted to the experimental data. Variation of k does not essentially affect the
turn of the curves, in the case of model I (see 3.17). The iteration procedure for the solution
of (6.15) in the case of Id<l>*/dV~1 ~ 1, Vp ~ kj(VM + V~) has been replaced by the New­
tonian formula (for better convergence). Figure 2 shows the plots, achieved by the
mentioned procedure, together with the experimental results.

8. CONCLUSIONS

Two models for the elastic-plastic compression of porous bodies have been examined.
The first one is easier from the standpoint of analytical treatment. On the other hand, it is
seen from Fig. 2 that the curves belonging to model II can be fitted to the experimental
data in a better way than those which yield from the other model. Hence, the measure­
ments seem to be in favour of model II. However, a final statement about the advantage of
this model in favour of the other one cannot yet be given. This is so because any strain
hardening has not been taken into consideration. Acceptance, for instance, of a linear
hardening law would lead to a greater curvature of the curves calculated on the basis of
model I, such that also in this case a better fitting to the experiments could be achieved.

Nevertheless, the results prove the method of self-consistency to be applicable with
satisfactory success to the determination of elastic-plastic constitutive relations of porous
bodies. Therefore the authors feel encouraged to an attempt of extending this method to
more complicated stress-histories.
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FIG. 2. Comparison with experiments.

I model II (To '= 37.103 psi k l = 0·01
2 eq. (1.1) (To '= 43. 103 psi
3 model r (To '= 13. 103 psi k '= 0·001
4 model n (To = 13.103psi k 1 = 0·01
5 model II (To = 14.103 psi k1 = 0·03
6 model II (To = 9. 103psi k1 = 0·05
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A6CTpalCT-B npeJlIlaraeMoii pa60Te jl,aKlTCll 3aBI1CMOCTH MelK.£jY rMjI,pOCTaTH'IeCKI1M jl,aBneHHeM 11 t:peJlHeM
06"beMOM nophi HeKOToporo nopHCToro reJia. rnaBHhlM 06pa30M, o6pau-\aeTCll BHHMaHHe KnnaCTI1'1eCKOii
'l0He I1CTOpHI1 L\e(jlopMal.lHI1. B nporHBOnOJlOlKHOCrl1 Knpejl,blL\YUlI1M pa60TaM, rrpHHI1MaeTCll BO BHMMaliHe
B3aiiMOJ.\eiicTBHe MelKL\Y pa3HbMI1 rrOpaMI1 cyMMapHblM cnoco60M, nYTeM npl1MeHeHlIll CaMO-TIJIOTHOro
MerOjl,a. C :lTOH l.\enblO 3aMeHlleTCll OKPYlKHOCTh oTL\enbHoit nopbI Ojl,HOpOjI,HblM MarepHallOM, KOTOphlK
onHcaH 3aKOHOM CJKa;rllll. OnpeL\eJllllOTCll pe3YJlbraTbi 'lIiCJleHHO H .Il.alOTCSI npH6mlJKeHllble (jlOPMYllbl.
CpaBHeHHe C ::!KcnepHMeHTanbllhlMH pe3YJlbraraMH YKa3blBaeT '1acrwIHo xopOUloe COBnaiJ.eHHe.


